Gauss–Hermite interval quadrature rule
نویسندگان
چکیده
منابع مشابه
Gauss-Hermite interval quadrature rule
The existence and uniqueness of the Gaussian interval quadrature formula with respect to the Hermite weight function on R is proved. Similar results have been recently obtained for the Jacobi weight on [−1, 1] and for the generalized Laguerre weight on [0,+∞). Numerical construction of the Gauss–Hermite interval quadrature rule is also investigated, and a suitable algorithm is proposed. A few n...
متن کاملGaussian interval quadrature rule for exponential weights
Interval quadrature formulae of Gaussian type on R and R+ for exponential weight functions of the form w(x) = exp(−Q(x)), where Q is a continuous function on its domain and such that all algebraic polynomials are integrable with respect to w, are considered. For a given set of nonoverlapping intervals and an arbitrary n, the uniqueness of the n-point interval Gaussian rule is proved. The result...
متن کاملQuadrature rules on unbounded interval
After some remarks on the convergence order of the classical gaussian formula for the numerical evaluation of integrals on unbounded interval, the authors develop a new quadrature rule for the approximation of such integrals of interest in the practical applications. The convergence of the proposed algorithm is considered and some numerical examples are given.
متن کاملA Gaussian quadrature rule for oscillatory integrals on a bounded interval
We investigate a Gaussian quadrature rule and the corresponding orthogonal polynomials for the oscillatory weight function ei!x on the interval [ 1, 1]. We show that such a rule attains high asymptotic order, in the sense that the quadrature error quickly decreases as a function of the frequency !. However, accuracy is maintained for all values of ! and in particular the rule elegantly reduces ...
متن کاملAnother quadrature rule of highest algebraicdegreeof precision ?
We consider certain quadrature rules of highest algebraic degree of precision that involve strong Stieltjes distributions (i.e., strong distributions on the positive real axis). The behavior of the parameters of these quadrature rules, when the distributions are strong c-inversive Stieltjes distributions, is given. A quadrature rule whose parameters have explicit expressions for their determina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2007
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2007.01.027