Gauss–Hermite interval quadrature rule

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss-Hermite interval quadrature rule

The existence and uniqueness of the Gaussian interval quadrature formula with respect to the Hermite weight function on R is proved. Similar results have been recently obtained for the Jacobi weight on [−1, 1] and for the generalized Laguerre weight on [0,+∞). Numerical construction of the Gauss–Hermite interval quadrature rule is also investigated, and a suitable algorithm is proposed. A few n...

متن کامل

Gaussian interval quadrature rule for exponential weights

Interval quadrature formulae of Gaussian type on R and R+ for exponential weight functions of the form w(x) = exp(−Q(x)), where Q is a continuous function on its domain and such that all algebraic polynomials are integrable with respect to w, are considered. For a given set of nonoverlapping intervals and an arbitrary n, the uniqueness of the n-point interval Gaussian rule is proved. The result...

متن کامل

Quadrature rules on unbounded interval

After some remarks on the convergence order of the classical gaussian formula for the numerical evaluation of integrals on unbounded interval, the authors develop a new quadrature rule for the approximation of such integrals of interest in the practical applications. The convergence of the proposed algorithm is considered and some numerical examples are given.

متن کامل

A Gaussian quadrature rule for oscillatory integrals on a bounded interval

We investigate a Gaussian quadrature rule and the corresponding orthogonal polynomials for the oscillatory weight function ei!x on the interval [ 1, 1]. We show that such a rule attains high asymptotic order, in the sense that the quadrature error quickly decreases as a function of the frequency !. However, accuracy is maintained for all values of ! and in particular the rule elegantly reduces ...

متن کامل

Another quadrature rule of highest algebraicdegreeof precision ?

We consider certain quadrature rules of highest algebraic degree of precision that involve strong Stieltjes distributions (i.e., strong distributions on the positive real axis). The behavior of the parameters of these quadrature rules, when the distributions are strong c-inversive Stieltjes distributions, is given. A quadrature rule whose parameters have explicit expressions for their determina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2007

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2007.01.027